difference Fourier map was $1.002 \text{ e} \text{ Å}^{-3}$. An ORTEP (Johnson, 1965) drawing of the molecule is shown in Fig. 1. Final positional and equivalent isotropic thermal parameters are listed in Table 1;* some selected distances and angles are listed in Table 2.

Related literature. A previous report (Cotton & Shang, 1988) described the same tetranuclear cluster in the compound $Nb_4Cl_{10}(PMe_3)_6.2C_4H_8O$, the incorporated thf having been present in the reaction solution. In this work no thf was present at any time

and a different crystalline form containing no solvent of crystallization was obtained.

These studies were supported by the Robert R. Welch Foundation.

References

- COTTON, F. A. & SHANG, M. (1988). J. Am. Chem. Soc. 110, 7719–7722.
- FRENZ, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package, Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Acta Cryst. (1991). C47, 1718-1721

Structure of Pentakis(3,3',4,4'-tetramethyl-2,2',5,5'-tetrathiafulvalenium) Dodeca- μ -chloro-octahedro-hexakis(chlorotantalate) Dichloromethane Solvate (2/1): (TMTTF)₅[Ta₆Cl₁₈].0.5CH₂Cl₂

BY ANISSA SLOUGUI,* LAHCÈNE OUAHAB,† CHRISTIANE PERRIN AND DANIEL GRANDJEAN

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA 254 CNRS, Université de Rennes I, 35042 Rennes CEDEX, France

(Received 15 December 1990; accepted 17 January 1991)

Abstract. $[C_{10}H_{12}S_4]_5[Ta_6Cl_{18}].0.5CH_2Cl_2,$ $M_r =$ 3068.62, triclinic, $P\overline{1}$, a = 12.931 (5), b = 13.712 (5), c= 14·302 (6) Å, α = 114·31 (3), β = 97·01 (4), γ = 99·10 (5)°, V = 2232 Å³, Z = 1, D_x = 2·283 g cm⁻³, λ (Mo K α) = 0·71073 Å, μ = 82·99 cm⁻¹, F(000) = 1495, T = 293 K, R = 0.058 based on 3221 observed reflections with $I \ge 3\sigma(I)$. Four partially oxidized TMTTF molecules form stacks parallel to the [001] direction and one additional neutral TMTTF molecule, lying on the (010) plane, is perpendicular to this stack. The stacking mode of the TMTTF molecules is not regular. The separation between adjacent molecules ranges from 3.49 to 3.60 Å. The bond distances within the anion [average Ta-Ta: 2.959 (1); Ta—Clⁱ: 2.437 (6); Ta—Cl^a: 2.502 (6) Å. where Clⁱ and Cl^a are bridging and non-bridging Cl atoms, respectively] are in the range expected for a $[Ta_6Cl_{18}]^{3-}$ unit. The disordered dichloromethane

0108-2701/91/081718-04\$03.00

solvent molecule is located near the $(0,0,\frac{1}{2})$ position with a statistical occupancy.

Experimental. The compound was grown on a platinum wire electrode by anodic oxidation of the organic donor $(2 \times 10^{-3}M)$ in a mixture of DMF (85%) (DMF = N,N-dimethylformamide) and dichloromethane (15%) under low constant current $(I = 0.95 \ \mu A)$ in the presence of tetraethyl-ammonium [(Et₄N)₃Ta₆Cl₁₈] salts of the anion $(10^{-2}M)$ as supporting electrolyte.

Black crystal $0.09 \times 0.07 \times 0.07$ mm. Enraf-Nonius CAD-4 diffractometer, graphite-crystalmonochromatized Mo K α radiation. Cell dimensions: least-squares refinement from setting angles of 25 centered reflections ($\theta \le 15^{\circ}$). Intensities collected by θ -2 θ scans. The crystals of the title compound are unstable. In fact, after several days the intensities of the three standard reflections decreased slightly and the data collection procedure was stopped. Three standard reflections measured every hour: no fluctuation in intensities in the set of reflections used in

© 1991 International Union of Crystallography

^{*} Lists of structure factors, anisotropic thermal parameters and complete bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53973 (17 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

SHELDRICK, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.

^{*} Permanent address: Institut de Chimie, Université de Constantine, Algeria.

[†] Author to whom correspondence should be addressed.

J108-2701/J1/081/18-0+\$05:00

temperature factors $(\mathbf{\hat{A}}^2)$

Tal Ta2 Ta3 Cll

 $\begin{array}{c} {\rm C12} \\ {\rm C13} \\ {\rm C14} \\ {\rm C15} \\ {\rm C16} \\ {\rm C17} \\ {\rm C18} \\ {\rm C19} \\ {\rm S1} \\ {\rm C12} \\ {\rm C12} \\ {\rm C13} \\ {\rm C14} \\ {\rm C15} \\ {\rm S2} \\ {\rm C1} \\ {\rm C12} \\ {\rm C13} \\ {\rm C14} \\ {\rm C15} \\ {\rm S7} \\ {\rm S8} \\ {\rm C16} \\ {\rm C17} \\ {\rm C17} \\ {\rm C18} \\ {\rm C19} \\ {\rm C20} \\ {\rm S9} \\ {\rm S10} \\ {\rm C10} \\ {\rm C20} \\ {\rm S9} \\ {\rm S10} \\ {\rm C12} \\ {\rm C20} \\ {\rm S9} \\ {\rm S10} \\ {\rm C12} \\ {\rm C20} \\ {\rm S9} \\ {\rm S10} \\ {\rm C10} \\ {\rm C12} \\ {\rm C20} \\ {\rm S9} \\ {\rm S10} \\ {\rm C10} \\ {\rm C20} \\ {\rm S9} \\ {\rm S10} \\ {\rm C10} \\ {\rm C20} \\ {\rm S9} \\ {\rm S10} \\ {\rm C20} \\ {$

Table 1. Atomic coordinates and equivalent isotropic Table 2. Bond lengths (Å) and angles (°) with e.s.d.'s in parentheses

$B_{eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i . \mathbf{a}_j.$					Ta1—Ta2 Ta1—Ta2 Ta1—Ta3	2·963 (1) 2·961 (3) 2·956 (2)	S3—C8 S4—S4 S4—C9	1.73 (2) 1.75 (2) 1.77 (2)
Tal Ta2 Ta3 Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Sl	$\begin{array}{c} x \\ 0.02585 (6) \\ -0.16127 (6) \\ -0.03732 (6) \\ 0.0736 (4) \\ -0.1561 (4) \\ -0.2290 (4) \\ 0.2157 (4) \\ -0.0128 (4) \\ -0.1429 (4) \\ 0.0537 (5) \\ -0.3532 (5) \\ -0.3532 (4) \\ -0.0814 (4) \\ 0.6714 (4) \\ 0.670 (4) \end{array}$	<i>y</i> 0.09272 (6) 0.05732 (6) 0.13336 (6) 0.0469 (4) 0.0469 (4) 0.0468 (4) 0.1752 (4) 0.2617 (3) 0.2019 (4) 0.2054 (4) 0.1220 (4) 0.2948 (4) 0.5643 (4) 0.5643 (4)	z - 0.08412 (9) - 0.07628 (9) 0.11815 (9) - 0.2330 (5) - 0.1861 (5) 0.0497 (5) - 0.0079 (5) 0.0401 (5) - 0.1846 (6) - 0.1661 (6) 0.2577 (6) 0.02271 (6)	B_{eq} 3.84 (3) 3.90 (3) 3.89 (3) 5.0 (2) 4.7 (2) 4.4 (2) 4.4 (2) 4.8 (2) 5.3 (2) 5.9 (2) 5.4 (2) 5.1 (2) 5.0 (2)	$ \begin{array}{c} Ta1 - Ta3 \\ Ta1 - Cl1 \\ Ta1 - Cl2 \\ Ta1 - Cl4 \\ Ta1 - Cl5 \\ Ta1 - Cl5 \\ Ta1 - Cl7 \\ Ta2 - Ta3 \\ Ta2 - Ta3 \\ Ta2 - Cl3 \\ Ta2 - Cl2 \\ Ta2 - Cl3 \\ Ta2 - Cl4 \\ Ta2 - Cl6 \\ Ta2 - Cl8 \\ Ta3 - Cl1 \\ \end{array} $	2-965 (1) 2-433 (6) 2-437 (5) 2-439 (4) 2-443 (5) 2-522 (8) 2-956 (1) 2-958 (1) 2-958 (1) 2-958 (1) 2-445 (8) 2-433 (5) 2-451 (8) 2-435 (5) 2-486 (5) 2-486 (5)	55-C7 55-C10 56-C7 56-C11 C6-C7 C8-C9 C8-C9 C8-C12 C9-C13 C10-C11 C10-C14 C11-C15 57-C16 57-C17 58-C16	1-72 (2) 1-74 (2) 1-73 (2) 1-74 (2) 1-35 (3) 1-35 (3) 1-43 (3) 1-49 (3) 1-50 (3) 1-51 (3) 1-55 (3) 1-69 (3) 1-69 (3)
S2 C1 C2 C3 C4 C5 S3 S4 S5 S6 C6 C7 C8 C7 C8	0-5388 (4) 0-546 (2) 0-739 (1) 0-677 (2) 0-677 (2) 0-715 (2) 0-715 (2) 0-5871 (4) 0-4448 (4) 0-2411 (4) 0-3794 (4) 0-456 (2) 0-369 (2) 0-648 (2) 0-648 (2)	0-3405 (4) 0-481 (1) 0-459 (2) 0-354 (2) 0-491 (2) 0-250 (2) 0-6032 (4) 0-3850 (4) 0-3901 (4) 0-571 (2) 0-571 (2) 0-493 (2) 0-201 (2)	$\begin{array}{c} -0.0141 \ (6) \\ -0.0101 \ (2) \\ -0.020 \ (2) \\ -0.062 \ (2) \\ 0.003 \ (2) \\ -0.105 \ (2) \\ 0.3001 \ (6) \\ 0.2042 \ (6) \\ 0.2410 \ (6) \\ 0.2399 \ (6) \\ 0.267 \ (2) \\ 0.276 \ (2) \\ 0.276 \ (2) \\ 0.252 \ (2) $	38 (6) 46 (7) 45 (7) 61 (8) 52 (7) 55 (2) 51 (2) 50 (2) 49 (2) 40 (7) 46 (7) 51 (8) 50 (2)	$\begin{array}{c} 1a_{3} - Cl_{3} \\ Ta_{3} - Cl_{5} \\ Ta_{3} - Cl_{6} \\ Ta_{3} - Cl_{9} \\ Sl_{-} - Cl_{1} \\ Sl_{-} - Cl_{2} \\ S2 - Cl_{1} \\ S2 - Cl_{3} \\ Cl_{-} - Cl_{$	2 429 (5) 2 444 (7) 2 430 (5) 2 500 (6) 1 71 (2) 1 75 (2) 1 74 (2) 1 39 (3) 1 37 (3) 1 47 (3) 1 50 (3) 1 74 (2)	$\begin{array}{c} 88-C18\\ C16-C16\\ C17-C18\\ C17-C19\\ C18-C20\\ S9-C21\\ S9-C21\\ S10-C23\\ C21-C21\\ C22-C23\\ C22-C24\\ C23-C25\\ \end{array}$	1.42 (3) 1.40 (4) 1.31 (3) 1.54 (5) 1.52 (4) 1.75 (2) 1.69 (3) 1.70 (3) 1.81 (3) 1.40 (4) 1.38 (4) 1.48 (3) 1.51 (5)
C10 C11 C12 C13 C14 C15 S7 S8 C16 C17 C18 C19 C20 S9 S10 C21 C22 C23 C24 C25 C26 C110 C111	0-582 (2) 0-79 (2) 0-242 (2) 0-762 (2) 0-610 (2) 0-059 (2) 0-207 (2) 0-5418 (6) 0-6724 (6) 0-547 (2) 0-675 (2) 0-738 (2) 0-738 (2) 0-714 (2) 0-859 (2) 0-3780 (4) 0-5266 (4) 0-482 (2) 0-369 (2) 0-437 (2) 0-437 (2) 0-445 (2) 0-135 (7) 0-053 (8) 0-055 (4)	$\begin{array}{c} 0.391 (2) \\ 0.600 (2) \\ 0.701 (2) \\ 0.518 (2) \\ 0.282 (2) \\ 0.571 (2) \\ 0.808 (2) \\ 0.3403 (7) \\ 0.5612 (6) \\ 0.481 (2) \\ 0.356 (2) \\ 0.481 (2) \\ 0.356 (2) \\ 0.481 (2) \\ 0.355 (2) \\ 0.488 (2) \\ 0.488 (2) \\ 0.488 (2) \\ 0.0174 (5) \\ 0.0174 (5) \\ 0.0174 (5) \\ 0.0174 (5) \\ 0.015 (2) \\ 0.043 (2) \\ 0.142 (2) \\ 0.034 (2) \\ 0.142 (2) \\ 0.034 (2) \\ 0.054 (7) \\ 0.230 (4) \end{array}$	$\begin{array}{c} 0.209 \ (2) \\ 0.280 \ (2) \\ 0.326 \ (2) \\ 0.265 \ (2) \\ 0.265 \ (2) \\ 0.365 \ (2) \\ 0.365 \ (2) \\ 0.335 \ (7) \\ 0.4344 \ (7) \\ 0.5353 \ (7) \\ 0.494 \ (2) \\ 0.493 \ (2) \\ 0.493 \ (2) \\ 0.493 \ (2) \\ 0.493 \ (2) \\ 0.493 \ (2) \\ 0.493 \ (2) \\ 0.510 \ (3) \\ 0.5673 \ (6) \\ 0.547 \ (2) \\ 0.6450 \ (6) \\ 0.547 \ (2) \\ 0.686 \ (2) \\ 0.727 \ (2) \\ 0.738 \ (2) \\ 0.829 \ (3) \\ 0.491 \ (7) \\ 0.486 \ (7) \\ 0.512 \ (4) \end{array}$	$5 \cdot 0$ (7) $5 \cdot 0$ (7) $6 \cdot 6$ (9) $5 \cdot 0$ (7) $5 \cdot 3$ (8) $5 \cdot 6$ (8) $8 \cdot 0$ (3) $6 \cdot 2$ (9) 8 (1) $7 \cdot 0$ (9) 8 (1) $5 \cdot 6$ (2) $5 \cdot 6$ (2)	$\begin{array}{c} Ta2-Ta1-Ta2\\ Ta2-Ta1-Cl1\\ Ta2-Ta1-Cl1\\ Ta2-Ta1-Cl4\\ Ta2-Ta1-Cl5\\ Ta2-Ta1-Cl5\\ Ta2-Ta1-Cl5\\ Ta3-Ta1-Cl7\\ Ta3-Ta1-Cl7\\ Ta3-Ta1-Cl7\\ Ta3-Ta1-Cl7\\ Ta3-Ta1-Cl7\\ Ta3-Ta1-Cl4\\ Cl1-Ta1-Cl7\\ Cl2-Ta1-Cl4\\ Cl2-Ta1-Cl4\\ Cl2-Ta1-Cl5\\ Cl2-Ta1-Cl5\\ Cl2-Ta1-Cl5\\ Cl2-Ta1-Cl5\\ Cl4-Ta1-Cl5\\ Cl4-Ta1-Cl5\\ Cl4-Ta1-Cl7\\ Cl5-Ta1-Cl7\\ Cl5-Ta1-Cl7$	$\begin{array}{c} 89 \cdot 85 \ (4) \\ 59 \cdot 91 \ (3) \\ 95 \cdot 4 \ (1) \\ 52 \cdot 7 \ (2) \\ 142 \cdot 8 \ (2) \\ 95 \cdot 6 \ (1) \\ 134 \cdot 3 \ (1) \\ 89 \cdot 79 \ (6) \\ 142 \cdot 3 \ (2) \\ 95 \cdot 6 \ (2) \\ 95 \cdot 6 \ (2) \\ 95 \cdot 1 \ (2) \\ 52 \cdot 8 \ (2) \\ 134 \cdot 3 \ (1) \\ 89 \cdot 90 \ (2) \\ 89 \cdot 3 \ (2) \\ 164 \cdot 9 \ (3) \\ 83 \cdot 4 \ (2) \\ 164 \cdot 5 \ (3) \\ 89 \cdot 4 \ (2) \\ 81 \cdot 6 \ (2) \\ 88 \cdot 2 \ (2) \\ 82 \cdot 9 \ (2) \\ 81 \cdot 5 \ (2) \\ 90 \cdot 15 \ (3) \end{array}$	$\begin{array}{c} C13 - Ta3 - C19\\ C15 - Ta3 - C16\\ C15 - Ta3 - C19\\ C16 - Ta3 - C19\\ Ta1 - C12 - Ta2\\ Ta2 - C13 - Ta3\\ Ta1 - C12 - Ta2\\ Ta2 - C13 - Ta3\\ Ta1 - C14 - Ta2\\ Ta1 - C15 - Ta3\\ Ta2 - C16 - Ta3\\ C1 - S1 - C2\\ C1 - S1 - C2\\ C1 - S1 - C2\\ S1 - C1 - C1\\ S2 - C1 - C1\\ S1 - C2 - C4\\ C3 - C2 - C4\\ S2 - C3 - C5\\ C4 - S3 - C5\\ C6 - S3 - C8\\ C6 - S4 - C9\\ C7 - S5 - C10\\ \end{array}$	$\begin{array}{c} 82 \cdot 3 \ (2) \\ 88 \cdot 6 \ (2) \\ 81 \cdot 0 \ (2) \\ 82 \cdot 6 \ (2) \\ 75 \cdot 0 \ (2) \\ 74 \cdot 7 \ (2) \\ 74 \cdot 9 \ (1) \\ 74 \cdot 6 \ (2) \\ 75 \cdot 0 \ (1) \\ 96 \cdot 3 \ (9) \\ 95 \cdot 1 \ (9) \\ 116 \cdot (1) \\ 120 \cdot (1) \\ 120 \cdot (1) \\ 120 \cdot (1) \\ 127 \cdot (2) \\ 117 \cdot (1) \\ 127 \cdot (2) \\ 117 \cdot (1) \\ 126 \cdot (2) \\ 97 \cdot (1) \\ 96 \cdot 5 \ (9) \\ 95 \cdot (1) \end{array}$
the solution and refinement of the structure. One set of reflections collected up to $2\theta = 44^{\circ}$. 4521 indepen- dent reflections measured ($-13 \le h \le 13$, $-14 \le k \le$ 14, $0 \le l \le 15$), 3221 with $I \ge 3\sigma(I)$. Lorentz and polarization corrections, no absorption correction. Structure solved by analogy with the isomorphous niobium salt (Penicaud, Batail, Perrin, Coulon, Parkin & Torrance, 1987). H atoms placed at com- puted positions [$d(C-H) = 1$ Å; $B_{eq} = 4$ Å ²]. Full- matrix least-squares anisotropic (β_{ij}) refinement (H atoms isotropic, not refined); the C and Cl atoms of the solvent molecule are included in fixed observed					$\begin{array}{c} \text{Ta1}-\text{Ta2}-\text{Ta3}\\ \text{Ta1}-\text{Ta2}-\text{Cl2}\\ \text{Ta1}-\text{Ta2}-\text{Cl3}\\ \text{Ta1}-\text{Ta2}-\text{Cl4}\\ \text{Ta1}-\text{Ta2}-\text{Cl4}\\ \text{Ta1}-\text{Ta2}-\text{Cl6}\\ \text{Ta3}-\text{Ta2}-\text{Cl3}\\ \text{Ta3}-\text{Ta2}-\text{Cl3}\\ \text{Ta3}-\text{Ta2}-\text{Cl3}\\ \text{Ta3}-\text{Ta2}-\text{Cl4}\\ \text{Ta3}-\text{Ta2}-\text{Cl4}\\ \text{Ta3}-\text{Ta2}-\text{Cl4}\\ \text{Ta3}-\text{Ta2}-\text{Cl6}\\ \text{Ta3}-\text{Ta2}-\text{Cl6}\\ \text{Cl2}-\text{Ta2}-\text{Cl6}\\ \text{Cl2}-\text{Ta2}-\text{Cl6}\\ \text{Cl2}-\text{Ta2}-\text{Cl6}\\ \text{Cl2}-\text{Ta2}-\text{Cl6}\\ \text{Cl3}-\text{Ta2}-\text{Cl4}\\ \text{Cl3}-\text{Ta2}-\text{Cl6}\\ \text{Cl3}-\text{Ta2}-\text{Cl6}\\ \text{Cl3}-\text{Ta2}-\text{Cl6}\\ \text{Cl3}-\text{Ta2}-\text{Cl6}\\ \text{Cl3}-\text{Ta2}-\text{Cl6}\\ \text{Cl3}-\text{Ta2}-\text{Cl6}\\ \text{Cl3}-\text{Ta2}-\text{Cl6}\\ \text{Cl3}-\text{Ta2}-\text{Cl6}\\ \text{Cl4}-\text{Ta2}-\text{Cl6}\\ \text{Cl4}-\text{Ta2}-\text{Cl6}\\ \text{Cl4}-\text{Ta2}-\text{Cl8}\\ \text{Cl6}-\text{Ta2}-\text{Cl8}\\ \text{Cl6}-\text{Ta2}-\text$	59-93 (3) 52-5 (1) 95-6 (1) 142-7 (1) 95-5 (2) 134-3 (2) 89-93 (3) 95-5 (1) 52-5 (1) 142-5 (1) 142-5 (1) 134-2 (1) 142-5 (1) 134-2 (2) 81-8 (2) 81-8 (2) 81-8 (2) 81-7 (2) 81-7 (2) 81-7 (2) 81-7 (2) 81-7 (2) 83-0 (2) 83-3 (2) 90-21 (4)	$\begin{array}{c} C7-S6-C11\\ S3-C6-S4\\ S3-C6-C7\\ S4-C6-C7\\ S5-C7-S6\\ S5-C7-C6\\ S3-C8-C9\\ S3-C8-C9\\ S3-C8-C12\\ C9-C8\\ C9-C8\\ S4-C9-C13\\ S5-C10-C11\\ S5-C10-C11\\ S5-C10-C14\\ C10-C11-C15\\ C10-C11-C15\\ C16-S7-C17\\ C16-S8-C18\\ S7-C16-S8\\ S7-C16-C16\\ \end{array}$	$\begin{array}{c} 95 & (1) \\ 113 & (1) \\ 124 & (2) \\ 122 & (1) \\ 115 & (1) \\ 122 & (2) \\ 122 & (1) \\ 122 & (2) \\ 122 & (1) \\ 117 & (2) \\ 118 & (2) \\ 126 & (2) \\ 116 & (2) \\ 114 & (1) \\ 129 & (2) \\ 117 & (2) \\ 116 & (1) \\ 127 & (2) \\ 117 & (2) \\ 116 & (1) \\ 127 & (2) \\ 95 & (1) \\ 96 & (1) \\ 114 & (2) \\ 120 & (2) \\ 120 & (2) \end{array}$
positi wR = $[\sigma^2(R = 3 \cdot (r + 1))]$	tions with oc = 0.076 , $\sum w$ F_o^2) - $(0.07F_o)$ = $D5$, $\Delta \rho_{min} =$ International	cupancy fac $(F_o - F_c)^2$ $(F_o - F_c)^2$ $-3.12 \text{ e} \text{ Å}^-$ al Tables for	tors of 0.25. minimized, 9, $\Delta/\sigma_{max} =$ -3. Scatteri · X-ray Crys	w = 0.058, $w = 4F_o^2/$ 1.9, $\Delta \rho_{max}$ ng factors stallography	Ta1—Ta3—Ta2 Ta1—Ta3—Cl1 Ta1—Ta3—Cl3 Ta1—Ta3—Cl5 Ta1—Ta3—Cl6 Ta1—Ta3—Cl6 Ta1—Ta3—Cl9 Ta2—Ta3—Ta2	60-16 (3) 142-7 (1) 95-9 (2) 52-8 (1) 95-1 (2) 133-8 (2) 90-07 (3)	S8-C16-C16 S7-C17-C18 S7-C17-C19 C18-C17-C19 S8-C18-C17 S8-C18-C20 C17-C18-C20	126·(2) 119·(2) 116·(2) 125·(3) 115·(2) 116·(2) 129·(3)

Table 2 (cont.)

95-1 (1)	C21-S9-C22	97· (1)
52.6 (1)	C21-S10-C23	96. (1)
95.8 (1)	S9-C21-S10	115 (2)
142.5 (1)	S9-C21-C21	120. (2)
134-9 (1)	S10-C21-C21	125- (2)
88.1 (2)	S9-C22-C23	118-(2)
164-6 (2)	S9-C22-C24	118. (2)
89-5 (2)	C23-C22-C24	124. (3)
83.5 (2)	S10-C23-C22	114. (3)
89-8 (2)	S10-C23-C25	114 (2)
164-9 (2)	C22-C23-C25	130. (3)
	95-1 (1) 95-8 (1) 142-5 (1) 134-9 (1) 88-1 (2) 164-6 (2) 89-5 (2) 89-5 (2) 89-8 (2) 164-9 (2)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Fig. 1. Atomic numbering.

(1974, Vol. IV). All computer programs from Enraf-Nonius *SDP* described by Frenz (1978). Final atomic parameters are in Table 1,* bond distances and angles in Table 2. The atomic numbering is shown in Fig. 1 and the crystal structure is presented in Fig. 2.

Related literature. The title compound was studied as part of our investigations concerning 'organomineral' radical cation based salts, prepared by the electrocrystallization technique. The general formula of these compounds is $D_x C$, where D is an organic TTF derivative (TTF = tetrathiafulvalene) and C an inorganic hexanuclear metal cluster anion. Previous works have included $[Mo_6Cl_{14}]^2$ (Ouahab, 1985; Batail & Ouahab, 1985; Ouahab, Batail, Perrin & Garrigou-Lagrange, 1986), $[Re_6Se_5Cl_9]^-$ (Ouahab, 1985; Batail, Ouahab, Penicaud, Lenoir & Perrin, 1987; Penicaud, 1988), $[Nb_6Cl_{18}]^{n-}$ (Penicaud *et al.*, 1987; Penicaud, Batail, Coulon, Canadell & Perrin, 1990) and the diamagnetic $[Ta_6Cl_{18}]^{2-}$ (Slougui, Ouahab, Perrin, Grandjean & Batail, 1989). The present work investigates the crystal structure of (TMTTF)₅[Ta₆Cl₁₈].0.5CH₂Cl₂ for which the inorganic anion is paramagnetic (3-) as in the isomorphous niobium salts (TMTCF)₅[Nb₆Cl₁₈]. 0.5CH₂Cl₂, C =S,Se (Penicaud *et al.*, 1987; Penicaud et al., 1990) for which a trivalent Nb₆Cl₁₈ anion was observed and the charges of the TMTTF molecules

* Lists of structure factors, anisotropic thermal parameters and H-atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53950 (27 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 2. Projection of the unit-cell contents.

were determined. Moreover, interatomic distances in the Ta_6Cl_{18} unit are in good agreement with the corresponding distances reported for such a unit (Brničević, Ružić-Toroš, Kojić-Prodić, 1985; Slougui *et al.*, 1989).

References

- BATAIL, P. & OUAHAB, L. (1985). Mol. Cryst. Liq. Cryst. 125, 205-214.
- BATAIL, P., OUAHAB, L., PENICAUD, A., LENOIR, C. & PERRIN, A. (1987). C. R. Acad. Sci. Paris, 304, 1111–1116.

BRNIČEVIĆ, N., RUŽIĆ-TOROŠ, Z. & KOJIĆ-PRODIĆ, B. (1985). J. Chem. Soc. Dalton Trans. pp. 455–458.

- FRENZ, B. A. (1978). The Enraf-Nonius CAD-4 SDP A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI. Delft Univ. Press.
- OUAHAB, L. (1985). Thèse de doctorat d'état, Rennes, France.
- OUAHAB, L., BATAIL, P., PERRIN, C. & GARRIGOU-LAGRANGE, C. (1986). Mater. Res. Bull. 21, 1223–1230.

PENICAUD, A. (1988). Thèse de l'Université de Rennes I, France.

- PENICAUD, A., BATAIL, P., COULON, C., CANADELL, E. & PERRIN, C. (1990). Chem. Mater. 2, 123-132.
- PENICAUD, A., BATAIL, P., PERRIN, C., COULON, C., PARKIN, S. S. P. & TORRANCE, J. B. (1987). J. Chem. Soc. Chem. Commun. pp. 330–332.
- SLOUGUI, A., OUAHAB, L., PERRIN, C., GRANDJEAN, D. & BATAIL, P. (1989). Acta Cryst. C45, 388-391.

Acta Cryst. (1991). C47, 1721-1723

Lewis-Base Adducts of Group 11 Metal(I) Compounds. 60. Binuclear Adducts of Copper(I) Halides with 2-Hindered Pyridine Bases

BY PETER C. HEALY

School of Science, Griffith University, Nathan, Australia 4111

AND JOHN D. KILDEA, BRIAN W. SKELTON, A. FIONA WATERS AND ALLAN H. WHITE

Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, Australia 6009

(Received 22 June 1990; accepted 8 November 1990)

Abstract. (I): Di- μ -bromo-bis[bis(2-bromopyridine)copper(I)], [Cu₂Br₂(C₅H₄BrN)₄], $M_r = 918 \cdot 9$, triclinic, $P\overline{1}$, $a = 10 \cdot 224(4)$, $b = 8 \cdot 935(2)$, $c = 7 \cdot 892(2)$ Å, $\alpha = 68 \cdot 84(2)$, $\beta = 71 \cdot 96(3)$, $\gamma = 83 \cdot 23(3)^\circ$, V = 639(1) Å³, Z = 2, $D_x = 2 \cdot 39$ g cm⁻³, Mo K α radiation, $\lambda = 0.71069$ Å, $\mu = 109$ cm⁻¹, F(000) = 864, T = 293 K, final R = 0.052. (II): Di- μ -chloro-bis[bis(2benzylpyridine)copper(I)], [Cu₂Cl₂(Cl₂H₁₁N)₄], $M_r = 874 \cdot 9$, triclinic, $P\overline{1}$, $a = 16 \cdot 441(5)$, $b = 9 \cdot 183(5)$, $c = 7 \cdot 661(2)$ Å, $\alpha = 76 \cdot 87(4)$, $\beta = 81 \cdot 65(3)$, $\gamma = 73 \cdot 17(4)^\circ$, V = 1074(1) Å³, Z = 2, $D_x = 1 \cdot 35$ g cm⁻³, Mo K α radiation, $\lambda = 0.71069$ Å, $\mu = 8 \cdot 1$ cm⁻¹, F(000) = 452, T = 293 K, final R = 0.047.

Experimental. (I): Prism, dark red-brown, crystal size $0.44 \times 0.35 \times 0.20$ mm, scintillation detector. Diffraction measurement method: $2\theta/\theta$, diffraction temperature 293 K. Absorption correction type: analytical. T_{\min}, T_{\max} not recorded. $\theta_{\min} = 2.09$, $\theta_{\max} = 27.47^{\circ}$; $h \ 0 \rightarrow 13$, $k - 11 \rightarrow 11$, $l - 9 \rightarrow 10$. Six standard reflections, measured every 100 reflections, intensity variation 0%. Criterion for observed reflections: $l > 3\sigma(l)$. Full-matrix least-squares refinement, 1909 reflections 'observed' out of 2934 independent measured; number of parameters in least-squares refinement 145, wR(all reflections) = 0.061,

wR(observed reflections) = 0.059, *S*(all reflections) = 2.29, *S*(observed reflections) = 2.77, weights based on measured σ 's; $(\Delta/\sigma)_{max} = 0.088$, $(\Delta/\sigma)_{mean} = 0.004$, $\Delta\rho_{max} = 0.966$, $\Delta\rho_{min} = -0.946$ e Å⁻³, no correction for secondary extinction.

(II): Plate, colourless, crystal size $0.5 \times 0.2 \times$ 0.03 mm, scintillation counter. Diffraction measurement method: $2\theta/\theta$, diffraction temperature 293 K. Absorption correction type: Gaussian. $A_{\min}^* = 1.03, A_{\max}^* = 1.17$. $\theta_{\min} = 1.30, \ \theta_{\max} = 24.99^\circ; \ h \ 0 \rightarrow 19, \ k - 10 \rightarrow 10, \ l$ $-8 \rightarrow 9$. Eight standard reflections, measured every 100 reflections, intensity variation 0%. Criterion for observed reflections: $I > 3\sigma(I)$. Full-matrix least-squares refinement, 2189 reflections 'observed' out of 3778 independent measured; number of parameters in least-squares refinement 254, R(all reflections) = 0.098, wR(all reflections) = 0.057, wR(observed reflections) = 0.050, S(all reflections) = 1.26, S(observed reflections) = 1.48, weights based on measured σ 's; $(\Delta/\sigma)_{max} = 0.101$, $(\Delta/\sigma)_{mean} = 0.012, \ \Delta\rho_{max} = 0.370, \ \Delta\rho_{min} = -0.368$ e $Å^{-3}$, Gaussian extinction correction (Zachariasen, 1963), secondary-extinction coefficient = 0.131.

Data collection: Enraf-Nonius CAD-4 software. All calculations and diagrams were performed with the *XTAL3.0* package (Hall & Stewart, 1990), as was the

0108-2701/91/081721-03\$03.00

© 1991 International Union of Crystallography